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space 
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Abstrrrct. The radial equation of a static massive scalar meson field in a Schwarzschild 
background space is solved by asymptotic methods leading to solutions over the whole 
range. This approach is used to obtain the form of the Yukawa potential in the presence of a 
large Schwarzschild black hole, and to show that the meson field fades away to zero as the 
event horizon is reached, in agreement with the ‘no hair’ conjecture. 

1. Introduction 

The electrostatic field of a point charge in a Schwarzschild space has been fully discussed 
by &hen and Wald (1971) and Hanni and Ruffini (1973). This work shows that the 
slow fall of the charge into a Schwarzschild black hole leads, in the limit as the event 
horizon is reached, to the formation of a Nordstrom-Reissner black hole. The 
corresponding problem of the slow fall of a strongly interacting nuclear source (a 
baryon) has been discussed by Teitelboim (1972), who found that the associated 
massive scalar meson field fades away to zero as the event horizon is reached. This 
result is in agreement with the well known ‘no hair’ conjecture that a black hole can only 
possess mass, electric charge and angular momentum. Teitelboim’s work, however, did 
not follow the method used by Cohen and Wald and Hanni and Ruffini, and depended 
only on the general nature of the solution rather than the full solution of the scalar 
meson field equation in a Schwarzschild space. Accordingly no explicit form was 
obtained for the meson field of a baryon in the curved space. 

In this paper a detailed solution of the Klein-Gordon equation in a Schwarzschild 
space is found, and the form of the Yukawa potential due to a static source is obtained. 
However, unlike the electrostatic problem, the basic radial equation is not soluble in 
terms of known functions, and furthermore the existence of two constants representing 
the masses of the meson and the black hole leads to the appearance of a large 
dimensionless constant in the basic differential equation. This equation is not soluble 
exactly but is amenable to the method of asymptotics developed by Green and Liouville 
(see Jeffreys 1962 and Olver 1974). 

2. Basicequations 

In flat space the static meson field due to a baryon source at x = x’ is described by the 
Klein-Gordon equation in its time-independent form 

(V2-p2)@= gs(3)(x-x’), (2.1) 
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where g is the source strength, and p is the inverse Compton wavelength of the 
7-meson. This equation has the well known (Yukawa) spherically symmetric potential 
solution @ = -g e-,'/r outside the source. Equation (2.1) may be put into the generally 
covariant form 

(see Teitelboim 1972), where x ' (h )  defines the world line of the source such that 
x o  = x r 0 ( A )  defines A in terms of xu, the time coordinate. Throughout we use the metric 
ds2 = g,, dx" dxY(p, v = 0,1,2,3) with a signature -2, and write g4 as the determinant 
of g,,. If the source is stationary then ds(A) = & dx" and the right-hand side of (2.2) 
becomes 

d 4 ' ( X  - x ' )  
./goo dx" = - g p S ' 3 ' ( x  -x'). 
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If the space and time parts of the metric are orthogonal then (2.3) reduces to 

d3'(X -x') 

6 -g 

(2.3) 

(2.4) 

where g3 is the determinant of the metric tensor of the space part. 

background space given by the Schwarzschild exterior metric 
We now consider a baryon source outside a black hole situated at r = b, 8 = 0 in a 

(2.5) 

where m is the mass of the collapsed object in appropriate units. Taking @ to be 
independent of time t (=xo)  and 4, (2.2) and (2.4) lead to the equation 

dsZ=[1-(2m/r)]dt2-[1-(2m/r)]-' dr2-r2 de2-rZ sin2 8 d4', 

~ ( r  - 6)  COS e - 1) 
2 7 2  = g  

where S ( r  - b) dr = 1 and S(cos  8 - 1) sin 8 df3 d 4  = 21r. Writing 

and substituting into (2.6) we find 

(2.8) 

which, on multiplying by P,,(cos 8 )  sin 8 d e  and integrating over 8, leads to the radial 
equation 

~ ( r - b )  ~ ( ~ 0 s  e- 1) 
2T = g  
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The substitution x = ( r  - 2 m ) / m  into (2 .9)  finally gives 

- [ 1 ( 1 +  1 )  + N 2 ( x  + 2 ) 2 ] R ~  = g (2.10) 
dx 

where N = p m ,  and xb = (b - 2 m ) / m .  The appearance of the constant N arises from the 
non-zero rest mass of the quantum of the meson field. In the work on the electrostatic 
field no such constant appeared since the quantum of the electromagnetic field (the 
photon) has zero rest mass. We note here that for an object of Sun-like mass with a 
Schwarzschild radius 2m of order lo5 cm, N is of order 10l8 since p = 1013 cm-’. 

3. Solution of the radial equation outside the source 

When x # xb ,  (2.10) may be written in normal form by putting 

Rl = Zl[x(x + 2)]-’’2 

to give 

,32/ = 0. 
1 

(3 .1)  

This equation does not appear to be exactly soluble in terms of known functions, and 
accordingly we look for an approximate solution by using the Green-Liouville method 
of asymptotics as follows: the independent variable x is changed to 5 by the transforma- 
tion x = x ( 5 ) ,  and the dependent variable changed to GI = (d[/dx)”2Zl. In this way we 
obtain the equation 

Lettin k 2 - N 2 + 1 ( 1 +  1 ) , P 2 = N 2 / k 2  and a 2 =  1(1+ 1)/k2,  so that O s a  s 1, O S P  s 1 ,  
and a = 1 -p2 ,  (3.2) becomes F -  

where the relation between x and 5 is at our disposal. Choosing 

2 + x  CY2 

= P2(,) +- 

we have 
2 

2 2 + x  5 = loX [ P (,) ‘$3 1’2 dx, 

(3.3) 

(3 .4)  

(3 .5)  

which may be expressed as the sum of a number of elliptic integrals. Equation (3:4) 
allows (3 .3)  to be written as 



1264 D J Rowan and G Stephenson 

where 
5‘“ 3 r 2  1 1 1  

g 1 ( 0  = [g-, p- x 2 ( x  +2)2 PI +$ 
- - P4(X +2)4(4x- 1)+2a2~2(X+2)2(3x2+3x - )+aZ(x2+2x - 

4@2(x+2)2+a2]3x(x+2) 

(3.7) 

After some lengthy calculations, we find that gl@) = O( 1) as 6 + 0 and is O( 1/t2) as 
6 i, a. Furthermore, numerical calculations show that g1(&) has an upper bound of less 
than 5 and is a slowly varying function of 6. Now since k 2  = N 2  + 1(1+ 1) is a large 
parameter we may obtain very good approximate solutions of (3.6) by neglecting g l ( ( ) .  
The resulting equation has two solutions 

where Io and KO are the modified Bessel functions of the first and second kind 
respectively. Using the two transformations relating RI to Zl, and Zl to GI, and the 
expression for 6‘ in (3.4), we have 

which defines the two solutions 

and 

(3.10) 

(3.11) 

(3.12) 

4. Integration across the singulrvity 

We now use the approximate solutions (3.11), (3.12) to obtain a solution of (2.10). First 
integrate (2.10) across the singularity and take the limit as the range of integration goes 
to zero. The requirement of continuity on Rl(x) at x = x b  gives 

The required solution of (2.10) should be finite as x + 0 and approach zero as x +W. 
This implies that Rl(x)  must have the form 

Substituting (4.2) into (4.1) and using continuity at x = x b  leads to 

1’2 Ri2’(Xb)R il)(x), O c x a x b ,  (YAY (&) R il)(Xb)R ;”(x),  x b 4 x < m .  
& ( x )  = -g (4.3) 
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Finally inserting (4.3) into (2.7) we have 

(4.4) 

which when written out specifically for xb < x < 00 has the form 

where 56 is the value of 8 at x = xb, and x = (r - 2m) /m.  The uniform convergence of 
this series with respect to xb has been proved for 0 x b  < x,  and 0 < x < 00. Since each 
term in the series tends to zero as x b  -* 0, we see that @(x,  8) also tends to zero as Xb + 0, 
that is, as the source approaches the event horizon. Further the dominant term in the 
fall off, for small xb, is found to be given by 

( x b  )1’2 = ( 1-- 2bm)1’2 (as b + 2m)  
x b  + 2  (4.6) 

in agreement with the result found by Teitelboim. The explicit solutions obtained here 
may have some interest in the quantization programme. We should finally emphasize 
again that the analysis used here depends on the existence of a large parameter in the 
theory and is therefore probably not appropriate for the study of small black holes 
where N will be a much smaller quantity. 
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